

Question		Answer $\begin{aligned} & f(-x)=\frac{-x}{\sqrt{2+(-x)^{2}}} \\ & =-\frac{x}{\sqrt{2+x^{2}}}=-f(x) \end{aligned}$ Rotational symmetry of order 2 about O	Marks M1 A1 B1 [3]	Guidance	
2	(i)			substituting $-x$ for x in $f(x)$ $1^{\text {st }}$ line must be shown, must have $f(-x)=$ $-f(x)$ oe somewhere must have 'rotate' and ' O ' and 'order 2 or 180 or $1 / 2$ turn'	$\begin{aligned} & \frac{-x}{\sqrt{2+-x^{2}}}, \frac{-x}{\sqrt{2+-\left(x^{2}\right)}}, \frac{-x}{\sqrt{2+\left(-x^{2}\right)}} \text { M1A0 } \\ & \frac{-x}{\sqrt{2-x^{2}}} \text { M0A0 } \end{aligned}$ oe e.g. reflections in both x - and y-axes
	(ii)	$\begin{array}{r} f^{\prime}(x)=\frac{\sqrt{2+x^{2}} \cdot 1-x \cdot \frac{1}{2}\left(2+x^{2}\right)^{-1 / 2} \cdot 2 x}{\left(\sqrt{2+x^{2}}\right)^{2}} \\ =\frac{2+x^{2}-x^{2}}{\left(2+x^{2}\right)^{3 / 2}}=\frac{2}{\left(2+x^{2}\right)^{3 / 2}} * \end{array}$ When $x=0, f^{\prime}(x)=2 / 2^{3 / 2}=1 / \sqrt{ } 2$	M1 M1 A1 A1 B1 [5]	quotient or product rule used $1 / 2 u^{-1 / 2}$ or $-1 / 2 v^{-3 / 2}$ soi correct expression NB AG oe e.g. $\sqrt{ } 2 / 2,2^{-1 / 2}, 1 / 2^{1 / 2}$, but not $2 / 2^{3 / 2}$	QR: condone $u \mathrm{~d} v \pm v \mathrm{~d} u$, but u, v and denom must be correct $\begin{aligned} & x(-1 / 2)\left(2+x^{2}\right)^{-3 / 2} \cdot 2 x+\left(2+x^{2}\right)^{-1 / 2} . \\ & =\left(2+x^{2}\right)^{-3 / 2}\left(-x^{2}+2+x^{2}\right) \end{aligned}$ allow isw on these seen
	(iii)	$\begin{aligned} & A=\int_{0}^{1} \frac{x}{\sqrt{2+x^{2}}}[\mathrm{~d} x] \\ & \text { let } u=2+x^{2}, \mathrm{~d} u=2 x \mathrm{~d} x \\ & =\int_{2}^{3} \frac{1}{2} \frac{1}{\sqrt{u}} \mathrm{~d} u \\ & =\left[u^{1 / 2}\right]_{2}^{3} \\ & =\sqrt{3}-\sqrt{2} \end{aligned}$	B1 M1 A1 A1cao [4]	correct integral and limits or $v=\sqrt{ }\left(2+x^{2}\right), \mathrm{d} v=x\left(2+x^{2}\right)^{-1 / 2} \mathrm{~d} x$ $\int \frac{1}{2} \frac{1}{\sqrt{u}}[\mathrm{~d} u]$ or $=\int 1[\mathrm{~d} v]$ or $k\left(2+x^{2}\right)^{1 / 2}$ [$\left.u^{1 / 2}\right]$ o.e. (but not $1 / u^{-1 / 2}$) or [$\left.v\right]$ or $k=1$ must be exact	limits may be inferred from subsequent working, condone no $\mathrm{d} x$ condone no $\mathrm{d} u$ or $\mathrm{d} v$, but not $\int \frac{1}{2} \frac{1}{\sqrt{u}} \mathrm{~d} x$ isw approximations

Question			Answer	Marks M1	Guidance	
2	(iv)	(A)	$\begin{aligned} & y^{2}=\frac{x^{2}}{2+x^{2}} \\ & \Rightarrow \quad 1 / y^{2}=\left(2+x^{2}\right) / x^{2}=2 / x^{2}+1^{*} \end{aligned}$	M1 A1 [2]	squaring (correctly) or equivalent algebra NB AG	must show $\left[\sqrt{\left(2+x^{2}\right)}\right]^{2}+2+x^{2}$ (o.e.) If argued backwards from given result without error, SCB1
	(iv)	(B)	$\begin{aligned} & -2 y^{-3} \mathrm{~d} y / \mathrm{d} x=-4 x^{-3} \\ & \Rightarrow \quad \mathrm{~d} y / \mathrm{d} x=-4 x^{-3} /-2 y^{-3}=2 y^{3} / x^{3} * \end{aligned}$ Not possible to substitute $x=0$ and $y=0$ into this expression	$\begin{gathered} \hline \text { B1B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { [4] } \end{gathered}$	LHS, RHS NB AG soi (e.g. mention of 0/0)	condone $\mathrm{d} y / \mathrm{d} x-2 y^{-3}$ unless pursued Condone 'can't substitute $x=0$ ' o.e. (i.e. need not mention $y=0$). Condone also 'division by 0 is infinite'

PhysicsAndMathsTutor.com

