C	Question		Answer	Marks	Guidance		
1			let $u = \ln x$, $dv/dx = x^3$, $du/dx = 1/x$, $v = \frac{1}{4}x^4$	M1	u, u', v', v all correct		
			$\int_{1}^{2} x^{3} \ln x dx = \left[\frac{1}{4}x^{4} \ln x\right]_{1}^{2} - \int_{1}^{2} \frac{1}{4}x^{4} \cdot \frac{1}{x} dx$	A1	$\frac{1}{4}x^{4}\ln x - \int \frac{1}{4}x^{4} \cdot \frac{1}{x}[dx]$	ignore limits	
			$= \left[\frac{1}{4}x^{4}\ln x\right]_{1}^{2} \int_{1}^{2}\frac{1}{4}x^{3}dx$	M1dep	simplifying $x^4 / x = x^3$ in second term (soi)	dep 1 st M1	
			$= \left[\frac{1}{4}x^{4}\ln x - \frac{1}{16}x^{4}\right]_{1}^{2}$	Alcao	$\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$ o.e.		
			$= 4 \ln 2 - 15/16$	Alcao	o.e. must be exact, but can isw	must evaluate $\ln 1 = 0$ and combine $-1 + 1/16$	
				[5]			

(Questi	on	Answer	Marks	Guidance		
2	(i)		$f(-x) = \frac{-x}{\sqrt{2 + (-x)^2}}$	M1	substituting $-x$ for x in $f(x)$	$\frac{-x}{\sqrt{2+-x^2}}, \frac{-x}{\sqrt{2+-(x^2)}}, \frac{-x}{\sqrt{2+(-x^2)}}$ M1A0	
			$=-\frac{x}{\sqrt{2+x^2}}=-f(x)$	A1	1 st line must be shown, must have $f(-x) = -f(x)$ oe somewhere	$\frac{-x}{\sqrt{2-x^2}}$ M0A0	
			Rotational symmetry of order 2 about O	B1	must have 'rotate' and 'O' and 'order 2 or 180 or $\frac{1}{2}$ turn'	oe e.g. reflections in both <i>x</i> - and <i>y</i> -axes	
				[3]			
	(ii)		$f'(x) = \frac{\sqrt{2+x^2} \cdot 1 - x \cdot \frac{1}{2} (2+x^2)^{-1/2} \cdot 2x}{(\sqrt{2+x^2})^2}$	M1 M1 A1	quotient or product rule used $\frac{1}{2} u^{-1/2}$ or $-\frac{1}{2} v^{-3/2}$ soi correct expression	QR: condone $udv \pm vdu$, but u , v and denom must be correct $x(-1/2)(2+x^2)^{-3/2} \cdot 2x + (2+x^2)^{-1/2}$.	
			$=\frac{2+x^2-x^2}{(2+x^2)^{3/2}}=\frac{2}{(2+x^2)^{3/2}}*$	A1	NB AG	$=(2+x^2)^{-3/2}(-x^2+2+x^2)$	
			When $x = 0$, $f'(x) = 2/2^{3/2} = 1/\sqrt{2}$	B1 [5]	oe e.g. $\sqrt{2/2}$, $2^{-1/2}$, $1/2^{1/2}$, but not $2/2^{3/2}$	allow isw on these seen	
	(iii)		$A = \int_0^1 \frac{x}{\sqrt{2+x^2}} [\mathrm{d}x]$	B1	correct integral and limits	limits may be inferred from subsequent working, condone no dx	
			let $u = 2 + x^2$, $du = 2x dx$		or $v = \sqrt{(2 + x^2)}$, $dv = x(2 + x^2)^{-1/2} dx$		
			$=\int_{2}^{3}\frac{1}{2}\frac{1}{\sqrt{u}}\mathrm{d}u$	M1	$\int \frac{1}{2} \frac{1}{\sqrt{u}} [du] \text{ or } = \int \mathbb{1}[dv] \text{ or } k(2+x^2)^{1/2}$	condone no d <i>u</i> or d <i>v</i> , but not $\int \frac{1}{2} \frac{1}{\sqrt{u}} dx$	
			$= \left[u^{1/2} \right]_2^3$	A1	$[u^{1/2}]$ o.e. (but not $1/u^{-1/2}$) or $[v]$ or $k = 1$		
			$=\sqrt{3}-\sqrt{2}$	A1cao [4]	must be exact	isw approximations	

(Question		Answer	Marks	Guidance	
2	(iv)	(A)	$y^2 = \frac{x^2}{2+x^2}$	M1	squaring (correctly)	must show $\left[\sqrt{(2+x^2)}\right]^2 + 2 + x^2$ (o.e.)
			$\Rightarrow 1/y^2 = (2 + x^2)/x^2 = 2/x^2 + 1 *$	A1	or equivalent algebra NB AG	If argued backwards from given result without error, SCB1
				[2]		
	(iv)	(<i>B</i>)	$-2y^{-3}dy/dx = -4x^{-3}$	B1B1	LHS, RHS	condone $dy/dx - 2y^{-3}$ unless pursued
			\Rightarrow dy/dx = -4x ⁻³ /-2y ⁻³ = 2y ³ /x ³ *	B1	NB AG	
			Not possible to substitute $x = 0$ and $y = 0$ into	B1	soi (e.g. mention of 0/0)	Condone 'can't substitute $x = 0$ ' o.e.
			this expression			(i.e. need not mention $y = 0$).
				[4]		Condone also 'division by 0 is infinite'

Question	Answer	Marks		Guidance
3	Let $u = 1 + x \implies \int_{0}^{3} x(1+x)^{-1/2} dx = \int_{1}^{4} (u-1)u^{-1/2} du$	M1	$\int (u-1)u^{-1/2}(\mathrm{d} u)^*$	condone no d <i>u</i> , missing bracket, ignore limits
	$=\int_{1}^{4} (u^{1/2} - u^{-1/2}) \mathrm{d} u$	A1	$\int (u^{1/2} - u^{-1/2})(\mathrm{d}u)$	
	$= \left[\frac{2}{3}u^{3/2} - 2u^{1/2}\right]_{1}^{4}$	A1	$\left[\frac{2}{3}u^{3/2}-2u^{1/2}\right]0.$	e.g $\left[\frac{u^{3/2}}{3/2} - \frac{u^{1/2}}{1/2}\right]$; ignore limits
	=(16/3-4)-(2/3-2)	M1dep	upper–lower dep 1 st M1 and integration	with correct limits e.g. 1, 4 for u or 0, 3 for x
	$=2\frac{2}{3}$	A1cao	or 2.6 but must be exact	or using $w = (1+x)^{1/2} \Rightarrow$ $\int \frac{(w^2 - 1)2w}{w} (dw) M1$
	OR Let $u = x$, $v' = (1 + x)^{-1/2}$	M1		$= \int 2(w^2 - 1)(dw) A1 = \left[\frac{2}{3}w^3 - 2w\right] A1$
	$\Rightarrow u'=1, v=2(1+x)^{1/2}$	A1		upper–lower with correct limits ($w = 1,2$) M1
	$\Rightarrow \int_{0}^{3} x(1+x)^{-1/2} dx = \left[2x(1+x)^{1/2} \right]_{0}^{3} - \int_{0}^{3} 2(1+x)^{1/2} dx$	A1	ignore limits, condone no dx	8/3 A1 cao
	$= \left[2x(1+x)^{1/2} - \frac{4}{3}(1+x)^{3/2}\right]_{0}^{3}$	A1	ignor limits	*I $\int_{1}^{4} (u-1)u^{-1/2} du$ done by parts:
	$= (2 \times 3 \times 2 - 4 \times 8/3) - (0 - 4/3)$ $= 2\frac{2}{3}$	A1cao	or $2.\dot{6}$ but must be exact	$2u^{1/2}(u-1) - \int 2u^{1/2} du A1$ [$2u^{1/2}(u-1) - 4u^{3/2}/3$] A1 substituting correct limits M1 8/3 A1cao
		[5]		

4		$u = x$, $du/dx = 1$, $dv/dx = \cos \frac{1}{2}x$, $v = 2\sin \frac{1}{2}x$	M1	correct u, u', v, v'	but allow v to be any multiple of $\sin \frac{1}{2} x$
		$\int_0^{\pi/2} x \cos \frac{1}{2} x \mathrm{d} x = \left[2x \sin \frac{1}{2} x \right]_0^{\pi/2} - \int_0^{\pi/2} 2\sin \frac{1}{2} x \mathrm{d} x$	A1ft	consistent with their <i>u</i> , <i>v</i>	M0 if $u = \cos \frac{1}{2} x$, $v' = x$
		$= \left[2x\sin\frac{1}{2}x + 4\cos\frac{1}{2}x \right]_{0}^{\pi/2}$	A1	$2x \sin \frac{1}{2}x + 4 \cos \frac{1}{2}x$ oe (no ft)	
		$=\pi\sin\frac{\pi}{4} + 4\cos\frac{\pi}{4} - (2.0.\sin 0 + 4\cos 0)$	M1	substituting correct limits into	can be implied by one correct intermediate step
		$= \pi \cdot \frac{1}{\sqrt{2}} + 4 \cdot \frac{1}{\sqrt{2}} - 4$		correct expression	
		$=\frac{\sqrt{2}}{2}\pi + 2\sqrt{2} - 4*$	A1cao [5]	NB AG	

5	(i)	W So	When $x = 3$, $y = 3/\sqrt{(3-2)} = 3$ o P is (3, 3) which lies on $y = x$	M1 A1 [2]	substituting $x = 3$ (both x's) y = 3 and completion ('3 = 3' is enough)	or $x = x/\sqrt{(x-2)}$ M1 $\Rightarrow x = 3$ A1(by solving or verifying)
	(ii)	$\frac{d}{d}$	$\frac{1}{2}\frac{y}{x} = \frac{\sqrt{x-2} \cdot 1 - x \cdot \frac{1}{2} \cdot (x-2)^{-1/2}}{x-2}$ $x-2-\frac{1}{2}x - \frac{1}{2}x-2$	M1 A1	Quotient or product rule PR: $-\frac{1}{2}x(x-2)^{-3/2} + (x-2)^{-1/2}$ correct expression	If correct formula stated, allow one error; otherwise QR must be on correct u and v , with numerator consistent with their derivatives and denominator correct initially
		=	$\frac{2}{(x-2)^{3/2}} = \frac{2}{(x-2)^{3/2}}$ $\frac{x-4}{2(x-2)^{3/2}} *$	M1 A1	× top and bottom by $\sqrt{(x-2)}$ o.e. e.g. taking out factor of $(x-2)^{-3/2}$ NB AG	allow ft on correct equivalent algebra from their incorrect expression
		W	When $x = 3$, $dy/dx = -\frac{1}{2} \times 1^{3/2}$ = $-\frac{1}{2}$	M1 A1	substituting $x = 3$	
		TI sy	This gradient would be -1 if curve were symmetrical about $y = x$	A1cao [7]	or an equivalent valid argument	

PhysicsAndMathsTutor.com

-					
5	(iii)	$u = x - 2 \Longrightarrow du/dx = 1 \Longrightarrow du = dx$	B1	or $dx/du = 1$	No credit for integrating initial integral by
		When $x = 3$, $u = 1$ when $x = 11$, $u = 9$ $\Rightarrow \int_{3}^{11} \frac{x}{\sqrt{x-2}} dx = \int_{1}^{9} \frac{u+2}{u^{1/2}} du$	B1	$\int \frac{u+2}{u^{1/2}} (\mathrm{d} u)$	parts. Condone $du = 1$.Condone missing du 's in subsequent working.
		$= \int_{1}^{9} (u^{1/2} + 2u^{-1/2}) \mathrm{d} u$	M1	splitting their fraction (correctly) and $u/u^{1/2} = u^{1/2}$ (or \sqrt{u})	or integration by parts: $2u^{1/2}(u+2) - \int 2u^{1/2} du$ (must be fully correct – condone missing
		$= \left[\frac{2}{3}u^{3/2} + 4u^{1/2}\right]_{1}^{9}$	A1	$\left[\frac{2}{3}u^{3/2} + 4u^{1/2}\right]$ (0.e)	bracket by parts: $[2u^{1/2}(u+2) - 4u^{3/2}/3]$
		=(18+12)-(2/3+4)	M1	substituting correct limits	F(9) - F(1) (u) or $F(11) - F(3) (x)$
		$=25\frac{1}{3}^{*}$	A1cao	NB AG	dep substitution and integration attempted
		Area under $y = x$ is $\frac{1}{2}(3 + 11) \times 8 = 56$ Area = (area under $y = x$) – (area under curve)	B1 M1	o.e. (e.g. 60.5 – 4.5) soi from working	must be trapezium area: $60.5 - 25\frac{1}{2}$ is M0
		so required area = $56 - 25\frac{1}{3} = 30\frac{2}{3}$	A1cao [9]	30.7 or better	3